Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.21.262188

ABSTRACT

Without approved vaccines and specific treatment, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading around the world with above 20 million COVID-19 cases and approximately 700 thousand deaths until now. An efficacious and affordable vaccine is urgently needed. The Val308 - Gly548 of Spike protein of SARS-CoV-2 linked with Gln830 - Glu843 of Tetanus toxoid (TT peptide) (designated as S1-4) and without TT peptide (designated as S1-5), and prokaryotic expression, chromatography purification and the rational renaturation of the protein were performed. The antigenicity and immunogenicity of S1-4 protein was evaluated by Western Blotting (WB) in vitro and immune responses in mice, respectively. The protective efficiency of it was measured by virus neutralization test in Vero E6 cells with SARS-CoV-2. S1-4 protein was prepared to high homogeneity and purity by prokaryotic expression and chromatography purification. Adjuvanted with Alum, S1-4 protein stimulated a strong antibody response in immunized mice and caused a major Th2-type cellular immunity compared with S1-5 protein. Furthermore, the immunized sera could protect the Vero E6 cells from SARS-CoV-2 infection with neutralization antibody GMT 256. The candidate subunit vaccine molecule could stimulate strong humoral and Th1 and Th2-type cellular immune response in mice, giving us solid evidence that S1-4 protein could be a promising subunit vaccine candidate.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.21.261404

ABSTRACT

The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 22 million people have been infected, with almost 800,000 fatalities. With the purpose of contributing to the development of effective therapeutics, this work provides an overview of the viral machinery and functional role of each SARS-CoV-2 protein, and a thorough analysis of the structure and druggability assessment of the viral proteome. All structural, non-structural, and accessory proteins of SARS-CoV-2 have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL